Go to the body of the page

Mitsubishi MaterialsElectronic Materials and Components

Contents start

Resistance - Temperature CharacteristicsNTC Thermistors

NTC Thermistor Resistance - Temperature Coefficient

The resistance and temperature characteristics of a thermistor can be approximated by equation 1.

\[   \begin{pmatrix} eq1 \end{pmatrix} \qquad R = R_o \ exp \begin{Bmatrix} B \begin{pmatrix} 1 / T-1 / To \end{pmatrix} \end{Bmatrix} \]

R : resistance at absolute temperature T(K)
R0 : resistance at absolute temperature T0(K)
B : B value
※T(K)= t(˚C)+273.15

The B value for the thermistor characteristics is not fixed, but can vary by as much as 5K/ ̊C according to the material composition. Therefore equation 1 may yield different results from actual values if applied over a wide temperature range.

By taking the B value in equation 1 as a function of temperature, as shown in equation 2, the difference with the actual value can be minimized.

\[   \begin{pmatrix} eq 2 \end{pmatrix} \qquad B_t = CT^2 + DT + E \]

C, D, and E are constants.
The B value distribution caused by manufacturing conditions will change the constant E, but will have no effect on constants C or D. This means, when taking into account the distribution of B value, it is enough to do it with the constant E only.

Using equations 3~6, constants C, D and E can be determined through four temperature and resistance value data points\( \begin{pmatrix} T_0,R_0 \end{pmatrix}.\begin{pmatrix} T_1,R_1 \end{pmatrix}.\begin{pmatrix} T_2,R_2 \end{pmatrix}and\begin{pmatrix} T_3,R_3 \end{pmatrix} \).
With equation 3, \( B_1,B_2 \) and \( B_3 \), can be determined from the resistancevalues for \( T_0 \) and \( T_1,T_2,T_3 \) and then substituted into the equations below.

\[ \begin{eqnarray}  \begin{pmatrix} eq 3 \end{pmatrix} \qquad B_n &=& \frac{ln \begin{pmatrix} R_n/R_o \end{pmatrix}}{ \frac{1}{T_n} - \frac{1}{T_0} } \\[8px]  \begin{pmatrix} eq 4 \end{pmatrix} \qquad C &=& \frac{ \begin{pmatrix} B_1 - B_2 \end{pmatrix} \begin{pmatrix} T_2 - T_3 \end{pmatrix} - \begin{pmatrix} B_2 - B_3 \end{pmatrix} \begin{pmatrix} T_1 - T_2 \end{pmatrix} }{ \begin{pmatrix} T_1 - T_2 \end{pmatrix} \begin{pmatrix} T_2 - T_3 \end{pmatrix} \begin{pmatrix} T_1 - T_3 \end{pmatrix} } \\[8px]  \begin{pmatrix} eq 5 \end{pmatrix} \qquad D &=& \frac{ B_1-B_2-C\begin{pmatrix} T_1 + T_2 \end{pmatrix}\begin{pmatrix} T_1 - T_2 \end{pmatrix} }{ \begin{pmatrix} T_1 - T_2 \end{pmatrix} } \\[8px]  \begin{pmatrix} eq 6 \end{pmatrix} \qquad E &=& B_1-DT_1-CT_1 \cdot T_1 \end{eqnarray} \]

Using a resistance-temperature characteristic chart, the resistance value over the range of 10 ̊C~30 ̊C is sought for a thermistor with a resistance of 5kΩ and a B value deflection of 50K at 25 ̊C.

  1. Determine the constants C, D and E from the resistance-temperature chart.

\[ T_0=25+273.15 \qquad T_1=10+273.15 \qquad T_2=20+273.15 \qquad T_3=30+273.15 \]

  1. \( B_T=CT^2+DT+E+50 \) ; substitute the value into equation and solve for \( B_T \)
  2. \( R=5 exp \begin{Bmatrix} B_T \begin{pmatrix} 1/T-1/298.15 \end{pmatrix}\end{Bmatrix} \) ; substitute the values into equation and solve for R

※T:10+273.15~30+273.15

NTC Thermistor Resistance - Temperature Coefficient
This website uses cookies to collect information about your browsing history for improving user experience and for marketing activities. Before using this website, please agree to the use of cookies by pressing the button at the bottom.
You can change settings at the "Collection of browsing history" section on the "Site Policy" webpage.
Agree and close