次世代自動車向け高耐熱電着絶縁コーティング技術の開発

漆原 誠 桜井 英章

Developments of Electro-Deposition Insulation Technology with a High Temperature Durability for Next Generation Vehicles

> Makoto URUSHIHARA Hideaki SAKURAI

Abstract

The insulation coating on complex geometries materials becomes more important to coil devices, such as inductors, reactors, and motors, in the next generation vehicles. Although an electro-deposition is one of the promising methods, there is no electro-deposited film that fully satisfied durability for those vehicle usages. Through optimizing manufacturing process of dispersion and a coating, we have successfully developed the film which remains higher electro resistivity durability under the 200°C than existing ones. We also established the coating process that makes the interface between a conductor and the developed film the high adhesion. Our developed insulation technology may help acceleration the high and multi functionality of coil devices in next generation vehicles.

キーワード:電着、コーティング、絶縁、高耐熱、密着

1. はじめに

電気自動車やハイブリッドカーなどの次世代自動車に おいて、パワーインダクターやリアクトル、モーターに 用いられるコイルには、高温下での高い絶縁信頼性が要 求されている。近年、それら「コイルデバイス」の小型 化に伴い、従来よりも複雑な形状、例えば金属導体の占 積率を向上するため断面が平角形状の線材(平角線)や, 屈曲もしくは巻回形状の導体部品に、均一に絶縁加工を 施すコーティング技術が求められている。我々はこれま で電着法で用いられていたものよりも、大幅に耐熱性を 向上した被膜材料の開発を進めてきた。また、開発した 被膜材料をマグネットワイヤとして利用した際に機能を 十分に発揮するためのコーティング技術も開発してきた。 本報告では、開発した被膜材料と、電着コーティング技 術の一例として密着度を制御した例について紹介する。

2. 電着コーティング

厚さが数 µm ~100 µm 程度の比較的厚い被膜を形成す る湿式成膜法としては、各種印刷法、ディスペンス法、 ディップ法,スプレー法,電気泳動電着法(以下,電着 法)などが知られているが、凹凸のある3次元形状への 均一コーティング技術としては、電界を利用した成膜手 法である静電スプレー法や電着法が有利であり、特に膜 厚分布や生産性の観点から電着法は魅力的な手法である。

電着法は無機粒子を用いたセラミックスの成型手段と

しても用いられるが、最も工業的に用いられているのは 樹脂粒子を用いた自動車ボディや部品の防錆加工やアル ミサッシの耐候加工, 眼鏡フレームなどの彩色加工であ ろう。図1に樹脂粒子と銅導体を用いた電着法の原理を 示す。電気絶縁性を意図したものでは、幾つかのメー カーから電着液が販売されている^{1,2)}。高耐熱性を実現す るものとしてはポリイミド樹脂やポリアミドイミド樹脂 (Polyamide-imide, PAI)の電着液が好適と考えられるが、 電着液の分散安定化や被膜の可とう性向上、電着塗工時 のハンドリングなどを考慮すると、一般に樹脂自体を変 性するアプローチが取られる。しかし、これだと本来期 待される高い耐熱性が得られず、次世代自動車用途で重 要となる高い絶縁性と耐熱性の両立に課題があった。

3. 高耐熱・高絶縁皮膜の開発

そこで我々は、絶縁樹脂種としては車載用途で実績の あるポリアミドイミドを選定し、樹脂骨格自体には耐熱 性が劣化するような変性は加えることなく、電着液の配 合組成や分散手法を最適化することで,分散安定性·電 着塗工性を向上した電着液と、それを用いたコーティン グ技術を開発した。図2に従来品と開発品の電着膜の 200℃保持時の絶縁性の変化を示した。従来品は、200℃ に保持した際に絶縁性が大きく劣化していたが、開発品 は絶縁性を長期に維持でき、高い耐熱性を有することが 分かる。なお、本開発品を用い得られたマグネットワイ ヤでは、温度指数220℃を達成していることを確認して

図1 樹脂粒子と銅導体を用いた電気泳動電着法の原理。ここではアニオン型(泳動粒 子がマイナスに帯電)を示した。

Schematic diagram of the electro deposition for the insulation coating. This diagram shows an anion type electro deposition

いる。また被膜は可とう性を有しており,銅などの導体 基材と被膜の熱膨張係数差に起因する熱サイクル時の剥 離の抑制も期待できる。

次に開発品を用いた均一コーティングの例を示す。図 3 は切欠きのある打抜き銅基材に被膜を形成した結果で、 本来であれば電気泳動の駆動力である電界(電気力線) が集中する導体コーナー部が極端に厚くなる,所謂ドッ クボーン形状になるはずだが,電着液配合組成や電着条 件の最適化により,コーナー部以外の箇所にも比較的均 ーに膜形成できていることが分かる。この技術を用いる ことで,例えばアスペクト比(矩形のものの長辺長さと 短辺長さの比)の大きな平角線(図4)などにも,耐熱 性が高い絶縁被膜を均一にコーティングでき,様々な用 途に応じたデバイスへの利用が期待できる。

図 3 切欠きのある複雑な形状の導体へコーティングした樹脂被膜の厚み Film thickness distribution on a conductor with complex geometry

図 4 平角線へコーティングした樹脂被膜の厚み。導体サイズ: 0.42 mm×17.2 mm, ア スペクト比 42.3。写真中の数値は、その箇所における皮膜厚さ

Film thickness distribution on a flat conductor. Size of conductor is $0.42 \text{ mm} \times 17.2 \text{ mm}$, aspect ratio is 42.3. Numerical values are film thickness at the indicated position in the figure

4. 被覆工程の最適化による密着度の向上

開発された絶縁被膜がマグネットワイヤのような部材 として利用される場合,マグネットワイヤとしては更な る機能が求められる。例えば,平角マグネットワイヤは, 駆動モーター等で利用される際³⁾,コイル形状に曲げ加 工が施される。特に次世代自動車向け用途では,モー ターの体格小型化や発熱損失の低減の観点⁴⁾から,コイ ルエンドの小型化が求められる。そのためには,マグ ネットワイヤの曲げ半径を小さくすることが求められて おり,マグネットワイヤに負荷のかかる曲げ加工が施さ れる。この時,マグネットワイヤの曲げの内側で,皮膜 の剥離が生じることがあるが,皮膜の浮きや剥がれはコ イルの絶縁不良にもつながり,開発された被膜の高い耐 熱性・絶縁性を十分に発揮できなくなる。

マグネットワイヤの製法として主流なディップ法では, 密着度の向上のために,導体と絶縁皮膜の間にプライ マー層を設ける⁵⁾といった方法等がとられるが,主体と なる絶縁皮膜とは異なる被膜材料を用いる必要があり均 一被覆がより難しい。さらに,電着では2種類の被覆を 行うことがプロセス上適用しがたいといった問題がある。 そこで我々は,プライマー層などは利用せずに,電着の 被覆プロセスを最適化することで,密着度を高める試み を行った。

銅導体に開発した PAI 被膜を電着コーティングして作 成した平角マグネットワイヤについて,標準サンプルと 高密着サンプルの2種類を用意し,コイル巻回装置を 使ってエッジワイズ曲げ(マグネットワイヤ断面の短辺 側を曲げる)した際の外観を図5に示した。標準サンプ ルと高密着サンプルの違いは電着被覆を行った後の焼付 処理の違いであり,高密着サンプルは密着度を高めるた めの最適化された処理条件を用いている。図5より,標 準サンプルは曲げの内側に被膜シワが発生しているのが 分かる。一方,高密着サンプルではそのようなシワは見 られず,被膜が導体の周りをしっかりとコーティングし ていることが分かる。

上記の2種類のサンプルについて、密着度が異なる要因を調べるために、界面部分の分析を行った。皮膜と導体の界面部の透過型電子顕微鏡(Transmission Electron Microscope, TEM)観察した結果を図6に、また観察部に

図 5 曲げ加工時の曲げ内側の皮膜外観 Appearance of bended enamel insulated wires

図 6 断面の TEM 像。(a) 標準サンプル, (b) 高密着サン プル

Cross-sectional TEM images of enamel insulated wires. Samples are prepared by the standard condition (a) and by the optimized condition for an adhesion enhancement (b)

おけるエネルギー分散型 X 線分光法(Energy Dispersive X-ray Spectroscopy, EDS)による線分析結果を図7に示す。図6を見ると標準サンプルでは銅と PAI が単純に接触したような界面となっているが,高密着サンプルでは, 銅と樹脂の間にどちらとも異なる層が存在していることが分かる。図7を見ると、高密着サンプルでは,界面部分に酸素が凝集した層が20 nm 程の幅を存在していることが確認できる。適切な熱処理により,銅と PAI の間に,酸素が凝集した層が形成され,これより,密着度の向上につながったと考えている。

図 7 界面部分の TEM-EDS 線分析結果。(a) 標準サンプル, (b) 高密着サンプル。横 軸原点側が皮膜側, 80 nm 側が銅側

TEM-EDS line scanning profile on the interface between Polyamide-imide (PAI) and Cupper (Cu). Samples are prepared by the standard condition (a) and by the optimized condition for an adhesion enhancement (b). The origin side in the x axis is PAI, the right side is Cu

5. おわりに

電着法はいわば「枯れた技術」であるが、これまで志 向されて来た性能や用途は限定的であり、均一コーティ ングという特長を考えると非常に拡張性のある技術であ る。この技術は異種材料の共電着による複合化にも適用 でき、有機/有機/無機のハイブリッド膜を形成 できるポテンシャルも兼ね備えている。車載用絶縁被膜 に要求される耐熱性、耐部分放電性、熱伝導性の向上の ためには複合材料の適用が極めて有効と考えられ、我々 はそういった用途に適する新たな技術の開発を継続して いる⁶。電着技術を更に高度化することで、今後加速す る次世代自動車用コイルデバイスの高機能化および小型 化に貢献して行きたい。

本報文について

本報文は,自動車技術会誌 Vol. 73 No.11 p. 118-119 (2019)「次世代自動車向け高耐熱電着絶縁コーティング 技術の開発」ならびに,第34回エレクトロニクス実装学 会春季講演大会 5D2-01「電着被覆による銅 - ポリアミ ドイミド界面の密着性改善」を基に,一部改変して紹介 した。

文 献

 https://nipponpaint-industrial.com/products/material/158/

- 2) http://www.shimizu-corp.co.jp/product/elecoat_pi.html
- 3)金岩浩志,加藤 充,梅田敦司,高崎 哲,神谷宗 宏,水谷竜彦,デンソーテクニカルレビュー,19, 56-60 (2014).
- 4)石上 孝, "電線整列機構搭載型ワーク回転方式によるモーター用コイルの高密着巻線に関する研究",横浜国立大学大学院博士論文,2章,12-22 (2011).
- 5) 例えば,吉田健吾,伊藤秀昭,特許第5493192号 (2014).
- 6) 飯田慎太郎, 桜井英章, 特開 2019-096606 (2019).

漆原 誠 Makoto URUSHIHARA CAE 領域 主任研究員

桜井 英章 Hideaki SAKURAI 戦略本社ものづくり・R & D 戦略部新規事業室 室長補佐